Plus, receive recommendations and exclusive offers on all of your favorite books and authors from Simon & Schuster.
Real-World Machine Learning
Published by Manning
Distributed by Simon & Schuster
LIST PRICE $49.99
PRICE MAY VARY BY RETAILER
Free shipping when you spend $40. Terms apply.
Buy from Other Retailers
Table of Contents
About The Book
Summary
Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy powerful ML systems.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand.
About the Book
Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems.
What's Inside
About the Reader
No prior machine learning experience assumed. Readers should know Python.
About the Authors
Henrik Brink, Joseph Richards and Mark Fetherolf are experienced data scientists engaged in the daily practice of machine learning.
Table of Contents
PART 1: THE MACHINE-LEARNING WORKFLOW
PART 2: PRACTICAL APPLICATION
Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy powerful ML systems.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand.
About the Book
Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems.
What's Inside
- Predicting future behavior
- Performance evaluation and optimization
- Analyzing sentiment and making recommendations
About the Reader
No prior machine learning experience assumed. Readers should know Python.
About the Authors
Henrik Brink, Joseph Richards and Mark Fetherolf are experienced data scientists engaged in the daily practice of machine learning.
Table of Contents
PART 1: THE MACHINE-LEARNING WORKFLOW
- What is machine learning?
- Real-world data
- Modeling and prediction
- Model evaluation and optimization
- Basic feature engineering
PART 2: PRACTICAL APPLICATION
- Example: NYC taxi data
- Advanced feature engineering
- Advanced NLP example: movie review sentiment
- Scaling machine-learning workflows
- Example: digital display advertising
Product Details
- Publisher: Manning (September 30, 2016)
- Length: 264 pages
- ISBN13: 9781617291920
Browse Related Books
Resources and Downloads
High Resolution Images
- Book Cover Image (jpg): Real-World Machine Learning 1st Edition Trade Paperback 9781617291920