Skip to Main Content

Automated Machine Learning in Action

Published by Manning
Distributed by Simon & Schuster

About The Book

Optimize every stage of your machine learning pipelines with powerful automation components and cutting-edge tools like AutoKeras and KerasTuner.

In Automated Machine Learning in Action you will learn how to:

Improve a machine learning model by automatically tuning its hyperparameters
Pick the optimal components for creating and improving your pipelines
Use AutoML toolkits such as AutoKeras and KerasTuner
Design and implement search algorithms to find the best component for your ML task
Accelerate the AutoML process with data-parallel, model pretraining, and other techniques

Automated Machine Learning in Action reveals how you can automate the burdensome elements of designing and tuning your machine learning systems. It’s written in a math-lite and accessible style, and filled with hands-on examples for applying AutoML techniques to every stage of a pipeline. AutoML can even be implemented by machine learning novices! If you’re new to ML, you’ll appreciate how the book primes you on machine learning basics. Experienced practitioners will love learning how automated tools like AutoKeras and KerasTuner can create pipelines that automatically select the best approach for your task, or tune any customized search space with user-defined hyperparameters, which removes the burden of manual tuning.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Machine learning tasks like data pre-processing, feature selection, and model optimization can be time-consuming and highly technical. Automated machine learning, or AutoML, applies pre-built solutions to these chores, eliminating errors caused by manual processing. By accelerating and standardizing work throughout the ML pipeline, AutoML frees up valuable data scientist time and enables less experienced users to apply machine learning effectively.

About the book
Automated Machine Learning in Action shows you how to save time and get better results using AutoML. As you go, you’ll learn how each component of an ML pipeline can be automated with AutoKeras and KerasTuner. The book is packed with techniques for automating classification, regression, data augmentation, and more. The payoff: Your ML systems will be able to tune themselves with little manual work.

What's inside

Automatically tune model hyperparameters
Pick the optimal pipeline components
Select appropriate models and features
Learn different search algorithms and acceleration strategies

About the reader
For ML novices building their first pipelines and experienced ML engineers looking to automate tasks.

About the author
Drs. Qingquan Song, Haifeng Jin, and Xia “Ben” Hu are the creators of the AutoKeras automated deep learning library.

Table of Contents
1 From machine learning to automated machine learning
2 The end-to-end pipeline of an ML project
3 Deep learning in a nutshell
4 Automated generation of end-to-end ML solutions
5 Customizing the search space by creating AutoML pipelines
6 AutoML with a fully customized search space
7 Customizing the search method of AutoML
8 Scaling up AutoML
9 Wrapping up

About The Authors

Qingquan Song, Haifeng Jin, and Dr. Xia “Ben” Hu are the creators of the AutoKeras automated deep learning library. Qingquan and Haifeng are PhD students at Texas A&M University, and have both published papers at major data mining conferences and journals. Dr. Hu is an associate professor at Texas A&M University in the Department of Computer Science and Engineering, whose work has been utilized by TensorFlow, Apple, and Bing.

Product Details

  • Publisher: Manning (June 7, 2022)
  • Length: 336 pages
  • ISBN13: 9781617298059

Browse Related Books

Resources and Downloads

High Resolution Images