Skip to Main Content

Ensemble Methods for Machine Learning

Published by Manning
Distributed by Simon & Schuster

LIST PRICE $59.99

PRICE MAY VARY BY RETAILER

Free shipping when you spend $40. Terms apply.

Buy from Other Retailers

About The Book

Ensemble machine learning combines the power of multiple machine learning approaches, working together to deliver models that are highly performant and highly accurate.

Inside Ensemble Methods for Machine Learning you will find:

  • Methods for classification, regression, and recommendations
  • Sophisticated off-the-shelf ensemble implementations
  • Random forests, boosting, and gradient boosting
  • Feature engineering and ensemble diversity
  • Interpretability and explainability for ensemble methods

Ensemble machine learning trains a diverse group of machine learning models to work together, aggregating their output to deliver richer results than a single model. Now in Ensemble Methods for Machine Learning you’ll discover core ensemble methods that have proven records in both data science competitions and real-world applications. Hands-on case studies show you how each algorithm works in production. By the time you're done, you'll know the benefits, limitations, and practical methods of applying ensemble machine learning to real-world data, and be ready to build more explainable ML systems.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

Automatically compare, contrast, and blend the output from multiple models to squeeze the best results from your data. Ensemble machine learning applies a “wisdom of crowds” method that dodges the inaccuracies and limitations of a single model. By basing responses on multiple perspectives, this innovative approach can deliver robust predictions even without massive datasets.

About the Book

Ensemble Methods for Machine Learning teaches you practical techniques for applying multiple ML approaches simultaneously. Each chapter contains a unique case study that demonstrates a fully functional ensemble method, with examples including medical diagnosis, sentiment analysis, handwriting classification, and more. There’s no complex math or theory—you’ll learn in a visuals-first manner, with ample code for easy experimentation!

What’s Inside

  • Bagging, boosting, and gradient boosting
  • Methods for classification, regression, and retrieval
  • Interpretability and explainability for ensemble methods
  • Feature engineering and ensemble diversity

About the Reader

For Python programmers with machine learning experience.

About the Author

Gautam Kunapuli has over 15 years of experience in academia and the machine learning industry.

Table of Contents

PART 1 - THE BASICS OF ENSEMBLES
1 Ensemble methods: Hype or hallelujah?
PART 2 - ESSENTIAL ENSEMBLE METHODS
2 Homogeneous parallel ensembles: Bagging and random forests
3 Heterogeneous parallel ensembles: Combining strong learners
4 Sequential ensembles: Adaptive boosting
5 Sequential ensembles: Gradient boosting
6 Sequential ensembles: Newton boosting
PART 3 - ENSEMBLES IN THE WILD: ADAPTING ENSEMBLE METHODS TO YOUR DATA
7 Learning with continuous and count labels
8 Learning with categorical features
9 Explaining your ensembles

About The Author

Gautam Kunapuli has over 15 years of experience in academia and the machine learning industry. He has developed several novel algorithms for diverse application domains including social network analysis, text and natural language processing, behavior mining, educational data mining and biomedical applications. He has also published papers exploring ensemble methods in relational domains and with imbalanced data.

Product Details

  • Publisher: Manning (May 2, 2023)
  • Length: 352 pages
  • ISBN13: 9781617297137

Browse Related Books

Resources and Downloads

High Resolution Images